

ſ

European Security and Defence College Doc: ESDC/2023/055 Date: 16 February 2023 Origin: ESDC Secretariat

Curriculum

|--|

Target audience	Aim
The participants should be mid-	The aim of the course is to provide the main notions of applied
officials dealing with information	cryptography, help the participants to familiarise with the use of hash
security and cybersecurity from FIL	functions, encryption algorithms and the available encryption tools.
Institutions Bodies and Agencies as	Furthermore, this course will allow the participants to exchange
well as EU Member States.	views, share best practices on applied cryptography topics by improving
Open to:	their knowledge, skills and competencies in this domain.
	By the end of this course, the participants will be familiar with the
EU Member States / EU	terminology, concepts and tools used in applied cryptography and share
Institutions Bodies and Agencies	views on how to protect data in personal and business environment.

CORRELATION WITH CTG / MTG TRAs	EQUIVALENCES
CTG / MTG TRA on Cyber and the EU Policy on Cyber Defence	 Specialised course, at tactical/operational level. Linked with the strategic objectives of Pillar 2 of the EU's Cybersecurity Strategy for the Digital Decade [16.12.2020 JOIN (2020)]

tions,
lic
t ,

Responsibility and Autonomy	LO9. Create symmetric cryptosystem LO10. Generate Certificates, Public Private Key LO11. Create asymmetric encryption and signing utility

Evaluation and verification of learning outcomes

The course is evaluated according to the Kirkpatrick model: it makes use of *level 1 evaluation* (*based on participants' satisfaction with the course*) and *level 3 evaluation* (*assessment of participants' long-term change in behaviour after the end of the course*). *Evaluation feed-back* is given in the level 1 evaluation on the residential modules.

In order to complete the course, the participants have to accomplish all learning objectives, which are evaluated based on their active contribution to the residential modules, including their syndicate sessions and practical activities as well as on their completion of the eLearning phases: course participants must finalise the autonomous knowledge units (AKUs) and pass the tests (*mandatory*), scoring at least 80% in the incorporated out-test/quiz. **However, no formal verification of the learning outcomes is foreseen; proposed ECTS is based on participants' workload only**.

The Executive Academic Board takes these factors into account when considering the award of *Certificates* to participants. Module leaders provide an evaluation report for each residential module. The Course Director is responsible for overall coordination, with the support of the ESDC Secretariat, and drafts the *final evaluation report*, *which* is presented to the Executive Academic Board.

Course structure			
The residential module is held over 3 days.			
Main Topic	Suggested Working Hours (required for individual learning)	Suggested Contents	
1. One Time Pad (OTP)	6(3)	 Pseudo-Random Number Generator (PRNG) Bitwise operations One-Time Pad (OTP) 	
2. Abstract Syntax Notation One (ASN.1)	10(4)	 Types Encoding rules Distinguished Encoding Rules (DER) 	
3. Hash functions	4(2)	 Data identification and integrity verification Hash-based PRNG Hash chain Hash tree Hash-based Message Authentication Code 	
4. Symmetric cryptography	5(2)	AESBlock cipherPassword based	
5. Asymmetric cryptography	5(2)	 RSA encryption Hybrid encryption RSA Public and Private key 	
6. Public Key Infrastructure (PKI) and certificates	10(4)	 Certificates ElGamal encryption system Payment Card Industry Data Security Standards (PCI-DSS) Encryption in compliance with industry standards and GDPR 	
7. Transport Layer Security (TLS)	5(2)	• Transport Layer Security overview and characteristics	
8. Email security	3	Encrypting emails	

9. Crypto Currencies	5	 Cryptocurrencies transactions (case study) Blockchain and the transaction log Anonymity
TOTAL	48(19)	

Material	Methodology
Required:	The course is based on the following
• AKU 104: Module 2 – Learn about Information	methodology: Presentations, Panels talks, Q&A
Security	and/or workshops
 ENISA, Algorithms, Key Sizes and Parameters	Additional information
Report, 2013 recommendations from October 2013,	Pre-course questionnaire on learning
https://www.enisa.europa.eu/publications/algorithms-	expectations and possible briefing topic from the
key-sizes-and-parameters-report?v2=1 ENISA, Post-quantum cryptography, Current state	specific area of expertise may be used.
and quantum mitigation from May 2021,	All course participants have to prepare for the
https://www.enisa.europa.eu/publications/post-	residential module by going through the relevant
quantum-cryptography-current-state-and-quantum-	eLearning preparatory phase, which is
mitigation Recommended: Directive (EU) 2022/2555 of the European Parliament and of	mandatory. The materials proposed for
the Council of 14 December 2022 concerning measures for a	supplemental (eLearning) study will reflect
high common level of cybersecurity across the Union (NIS 2) EU Policy on Cyber Defence,	current developments in the field of cyber
JOIN(22) 49 final, 10.11.2022 The EU's Cybersecurity Strategy for the Digital Decade	security/cyber defence in general and EU
(December 2020) The EU Cyber Diplomacy Toolbox (June 2017) Regulation (EU) 2016/679 of the European Parliament and of	policies in particular.
the Council of 27 April 2016 on the protection of natural	The Chatham House Rule is applied during all
persons with regard to the processing of personal data and on	residential phase of the course: "participants are
the free movement of such data, and repealing Directive	free to use the information received, but neither
95/46/EC (General Data Protection Regulation) Council conclusions on Strengthening Europe's Cyber	the identity nor the affiliation of the speaker(s),
Resilience System and Fostering a Competitive and Innovative	nor that of any other participant, may be
Cubarsecurity Inductry (November 2016)	revealed".